skip to main content


Search for: All records

Creators/Authors contains: "Tolbert, Sarah"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 13, 2025
  2. Rhenium diboride (ReB2) exhibits high differential strain due to its puckered boron sheets that impede shear deformation. Here, we demonstrate the use of solid solution formation to enhance the Vickers hardness and differential strain of ReB2. ReB2-structured solid solutions (Re0.98Os0.02B2 and Re0.98Ru0.02B2, noted as “ReOsB2” and “ReRuB2”) were synthesized via arc-melting from the pure elements. In-situ high-pressure radial x-ray diffraction was performed in the diamond anvil cell to study the incompressibility and lattice strain of ReOsB2 and ReRuB2 up to ∼56 GPa. Both solid solutions exhibit higher incompressibility and differential strain than pure ReB2. However, while all lattice planes are strengthened by doping osmium (Os) into the ReB2 structure, only the weakest ReB2 lattice plane is enhanced with ruthenium (Ru). These results are in agreement with the Vickers hardness measurements of the two systems, where higher hardness was observed in ReOsB2. The combination of high-pressure studies with experimentally observed hardness data provides lattice specific information about the strengthening mechanisms behind the intrinsic hardness enhancement of the ReB2 system. 
    more » « less
  3. Subramanyam, Guru ; Banerjee, Partha ; Lakhtakia, Akhlesh ; Sun, Nian X. (Ed.)
  4. Silica-based aerogels are a promising low-cost solution for improving the insulation efficiency of single-pane windows and reducing the energy consumption required for space heating and cooling. Two key material properties required are high porosity and small pore sizes, which lead to low thermal conductivity and high optical transparency, respectively. However, porosity and pore size are generally directly linked, where high porosity materials also have large pore sizes. This is unfavorable as large pores scatter light, resulting in reduced transmittance in the visible regime. In this work, we utilized preformed silica colloids to explore methods for reducing pore size while maintaining high porosity. The use of preformed colloids allows us to isolate the effect of solution conditions on porous gel network formation by eliminating simultaneous nanoparticle growth and aggregation found when using typical sol–gel molecular-based silica precursors. Specifically, we used in situ synchrotron-based small-angle x-ray scattering during gel formation to better understand how pH, concentration, and colloid size affect particle aggregation and pore structure. Ex situ characterization of dried gels demonstrates that peak pore widths can be reduced from 15 to 13 nm, accompanied by a narrowing of the overall pore size distribution, while maintaining porosities of 70%–80%. Optical transparency is found to increase with decreasing pore sizes while low thermal conductivities ranging from 95 +/− 13 mW/m K are maintained. Mechanical performance was found to depend primarily on effective density and did not show a significant dependence on solution conditions. Overall, our results provide insights into methods to preserve high porosity in nanoparticle-based aerogels while improving optical transparency.

     
    more » « less